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Abstract 

LiDAR (Light Detection and Ranging) is an advanced remote sensing technique that employs laser technology. 

It has diverse applications across various fields, including 3D city modeling, environmental and urban 

planning, and decision-making processes. 3D city modeling applications of LiDAR include 3D city information 

such as building reconstruction, solar power potential assessment, change detection, urban transport system, 

flood inundation modeling, urban vegetation and urban and peri-urban forest, urban land cover classification 

and extraction of power lines. Access to x y z of 3D city offers opportunities to derive a wealth of information 

about building, solar power potential of roof planes, changes in buildings and other structures, urban transport 

systems, urban flooding, urban vegetation and urban and peri-urban forest, urban land cover and urban power 

lines. The review paper focuses on critical aspects such as feature extraction, segmentation, object recognition, 

classification algorithms, and deep learning methods related to LiDAR. Additionally, it explores how LiDAR 

data can be applied effectively in creating detailed 3D models of cities. 
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Introduction 

A 3D city model is a representation of an urban 

environment with a three-dimensional geometry of 

common urban objects and structures, with 

buildings as the most prominent feature (Biljecki et 

al, 2015). They are either based on 

photogrammetry or on LiDAR (Light Detection 

and Ranging) or on a combination of both data 

acquisition techniques (Dorninger and Pfeifer, 

2008). Gupta (2015) also stated that 3D city models 

are the digital representation of the earth’s surface 

and related natural, cultural and manmade objects 

of the urban areas like buildings, trees, vegetation, 

podiums, etc. 3D city models could also be applied 

for climatic modeling, disaster management and 

mapping of buildings as well as study of urban 

built environment. 3D city modeling is important in 

many operational applications, such as urban 

planning and management, vehicle navigation and 

radio frequency signal propagation which are of 

increasing importance in modern society urban 

environments. 3D city models are also essential for 

supporting numerous management applications 

https://doi.org/10.61593/DBU.BIRJSH.01.07.03
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(Dorninger and Pfeifer, 2008). In this regard, 

information for a 3D city model may be acquired 

from aerial photographs or satellite imageries using 

photogrammetric techniques. In recent times, 

LIDAR systems have seen growing use in complex 

modelling requirements (Pal Singh et al., 2013). 

LIDAR, an active remote sensing technology, 

calculates distances by multiplying the speed of 

light with the time taken for a laser pulse to travel 

to a target object (Lim et al., 2003) 

LiDAR techniques have been researched and 

utilized since the early 1960s but seem to have 

become more prominent in the past few years. One 

of the earliest LiDAR applications was to study the 

atmosphere in 1963 by Fiocco and Smullin 

(Measures, 1984). However, the use of LiDAR data 

for 3D modeling of urban areas has gained more 

attention in recent years. One important reason that 

the applications of LiDAR technology to terrain 

models and topographic mapping are increasing is 

its integration with Global Positioning System 

(GPS). Consequently, applications of the LIDAR 

systems have developed recently through parallel 

advances in GPS and inertial navigation systems 

(INS) (Lim et al, 2003).  

The collection of 3D data using LiDAR has several 

advantages over most other techniques. Chief 

among them are higher resolutions, high vertical 

accuracy (centimeter accuracies), fast data 

collection and processing of robust data sets with 

many possible products and the ability to collect 

data in a wide range of conditions and ground 

detection in forested terrain (NOAA, Coastal 

Services Center, 2012). Rönnholm et al. (2009) 

also noted that LIDAR has become popular due to 

its fast 3D point cloud acquisition, improvements 

in post-processing software and high usability of 

the data generated. LiDAR technology serves as an 

accurate survey tool for obtaining highly accurate 

datasets. Airborne laser scanning is a rapid, highly 

accurate and efficient method for capturing 3D data 

of large areas. However, the quality of LiDAR data 

depends upon the sampling and filtering methods 

(Charlton et al., 2003).  

LiDAR’s versatility and high resolution make it 

valuable for various purposes, including 

atmospheric science (Devara and Rai, 1993; Wang 

& Menenti, 2021), bathymetric data collection 

(Mandlburger et al., 2015; Pan et al., 2015), law 

enforcement and telecommunication (Cerreta et al., 

2020; Carreon-Limones et al., 2017). Currently, 

LiDAR data are playing a key role in, urban and 

environmental planning and decision-making, 

modern navigation systems and some engineering 

projects as well as other disciplines and 

applications require 3D data (Rönnholm et al, 

2009). 3D city modeling applications of LiDAR 

include modeling rail way environments (Zhu and 

Hyyppa, 2014; Gézero, & Antunes, 2019 ), 

modeling urban park and trees(Omasa et al., 2007; 

Heo et al., 2019 ); extracting urban features from 

LiDAR DSM (Wang & Li, 2020); building 

reconstruction (Pu and Vosselman, 2009; Elberink 

and Vosselman, 2009; Yan et al., 2016; Jung et al., 

2017); integration of aerial thermal imagery, 

LiDAR data and ground surveys for surface 

temperature mapping (Mandanici et al, 2016); solar 

potential assessment ((Jochem, et al., 2009; 

Mansouri et al., 2019); Jochem et al.,2011 and 

schuffert et al., 2015); and rooftop surface 

temperature analysis (Zhao et al., 2015), as well as 

road surface modeling (Jaakkola et al., 2008; Wu et 

al., 2019) and extraction of urban power lines from 

vehicle-borne LiDAR data (Cheng et al., 2014). 

The point cloud data produced from various 

LiDAR systems is the key data source of the 

application of LiDAR system in 3D city modeling. 

However, there are very few discussions of the 
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feature extraction and segmentation algorithms, 

object detection and classification methods. Hence, 

in this review we attempted to incorporate the 

recent developments for processing and feature 

extraction of point cloud data such as features 

extraction and segmentation, object recognition and 

classification algorithms, and deep learning 

methods. Thus, the objective of this paper was to 

provide a review of the data processing and feature 

extraction algorithms and applications of LiDAR 

systems for 3D urban modeling. Specifically, it is a 

short description of LiDAR systems and its 

applications in 3D modeling of urban areas. The 

remainder of this paper is organized as follows. 

Section two presents and reviews feature extraction 

and segmentation algorithms. The third and fourth 

sections presents object recognition and 

classification algorithms and deep learning 

methods respectively. The fifth section presents 

selected applications of LiDAR systems in 3D city 

modeling. Finally, conclusions and future outlook 

are presented in section six.  

Feature Extraction and Segmentation  

Feature extraction involves identifying relevant 

attributes or characteristics from data. In the 

context of LiDAR point clouds (or any other data), 

it aims to extract specific information that helps 

differentiate between different points or objects. 

Low-level attributes, such as location, elevation, 

geometry, color, intensity, and point density, are 

considered during feature extraction. These 

attributes lack semantic meaning on their own but 

provide essential information about the data. By 

extracting features, we create a set of 

measurements that can be used for pattern 

recognition, classification, or further analysis. For 

example, we might extract features related to edge 

smoothness or other geometric properties. On the 

other hand, segmentation involves grouping data 

points based on their low-level attributes. It 

partitions the data into segments or objects. In the 

case of LiDAR point clouds, segmentation 

identifies regions with similar characteristics. 

These regions could correspond to individual 

objects (such as trees, buildings, or cars) or parts of 

larger objects. Once we have segments, we can 

perform more detailed analysis on each one (Chen 

et al., 2019).  Segmentation provides richer 

information about the objects or segments 

compared to analyzing each point individually. Che 

et al. (2019) discusses various methods for feature 

extraction and segmentation in LiDAR point 

clouds. Some of these methods include: Hough 

Transform, Random Sample Consensus 

(RANSAC), Principal Component Analysis (PCA), 

Fast Point Feature Histograms (FPFH), Region 

Growing and Connected Components, Graph-Cut, 

super voxelization.  

In their research, Li et al. (2012) introduced a novel 

algorithm that employs a top-to-bottom region 

growing approach to segment individual trees 

sequentially, starting from the tallest to the shortest. 

The study focused on mixed conifer stands with 

similar structural characteristics, utilizing small 

footprint, discrete return LiDAR data. The results 

indicated that the proposed algorithm has 

significant potential for accurately segmenting 

individual trees. Additionally, Vo et al. (2015) 

explored the feasibility of an octree-based region 

growing algorithm for precise and rapid 

segmentation of terrestrial and aerial LiDAR point 

clouds. Meanwhile, Zhao et al. (2016) proposed a 

point cloud segmentation method based on Fast 

Point Feature Histograms (FPFH). Their results 

demonstrated the effectiveness of this approach, 

which avoids both under-segmentation and over-

segmentation issues. 
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Similarly, Gilani et al. (2016) in their study 

proposed a PCA point cloud segmentation 

technique for building detection and roof plane 

extraction and the results showed the robustness of 

the approach and the quality of the reconstructed 

surfaces and extracted buildings.  

In another study, Xu et al. (2018) proposed a voxel 

- and probabilistic model-based method (VPM) to 

down sample large original point clouds to reduce 

the time costs of sequence processing and results 

showed that the proposed method outperformed 

representative segmentation algorithms, such as 

point- and voxel-based region growing, difference 

of normal based clustering, and LCCP. Li (2018) 

examined the feasibility of using embed super 

voxel-based nodes on a Riemannian graph and the 

experimental results showed that the technique can 

be effectively applied to the artificial point cloud in 

challenging circumstances. Jin & Lee (2019) in 

their study, proposed a fast Cylinder Shape 

Matching Using Random Sample Consensus 

(RANSAC) in Large Scale Point Cloud. The results 

demonstrated that the proposed method has 

enhanced the efficiency of the reverse design by 

matching linear and curved cylinder estimation 

without vertical/horizontal constraint and 

segmentation. Recently, Cheng et al. (2021) 

proposed an elaborate K nearest neighbor (KNN)-

based segmentation method via an optimization 

strategy. The experimental findings indicate that 

the proposed technique effectively removes noise 

and outperforms several traditional methods in 

terms of denoising performance and processing 

speed.        

Object Recognition and Classification 

Algorithms  

Urban environments contain a variety of objects 

including different types of buildings, transport, 

and other infrastructures such as roads, rail ways, 

electric poles, sewerage systems and manholes, 

green vegetation. However, its monitoring is 

traditionally conducted by visual inspection, which 

is time consuming and expensive. LiDAR systems 

such as terrestrial and aerial Mobile laser scanning 

(MLS) sample the urban environment efficiently by 

acquiring large and accurate point clouds. The 

developments of both terrestrial and aerial MLS 

systems, which provide LiDAR point clouds data, 

open a new opportunity for monitoring of urban 

environments. In this regard, several methods have 

been applied and developed for urban object 

recognition and classification (Huang & You; 

Wang et al., 2017; Huang et al., 2020; Zhu et al., 

2017). For instance, Wang et al. (2017) proposed a 

3D eigenvector-based shape descriptor using 

voxels (SigVox) - A 3D feature matching algorithm 

for urban road object recognition from mobile laser 

scanning point clouds. The results showed that the 

proposed approach was able to recognize street 

signs and lamp poles.   

In their research, Huang and You (2015) 

introduced a system with three key stages: 

localization, segmentation, and classification to 

identify and categorize pole-like objects from point 

clouds captured in urban environments. The 

method’s effectiveness was illustrated by 

comparing it to previous approaches using a 

comprehensive large-scale urban dataset. In another 

study, Huang et al. (2020) evaluated the 

performance of a sparse LSTM-based multi-frame 

3D object detection algorithm. In this study the 

authors applied the U-Net style 3D sparse 

convolution network (CNN) to extract features for 

each frame’s LiDAR point-cloud. The 

Experimental findings showed that the proposed 

algorithm outperforms the traditional frame by 

frame approach. 

https://www.researchgate.net/profile/Jing-Huang-3/publication/282985504_Pole-like_object_detection_and_classification_from_urban_point_clouds/links/57e194f508ae1f0b4d93ec5d/Pole-like-object-detection-and-classification-from-urban-point-clouds.pdf
https://www.researchgate.net/profile/Jing-Huang-3/publication/282985504_Pole-like_object_detection_and_classification_from_urban_point_clouds/links/57e194f508ae1f0b4d93ec5d/Pole-like-object-detection-and-classification-from-urban-point-clouds.pdf
https://www.researchgate.net/profile/Jing-Huang-3/publication/282985504_Pole-like_object_detection_and_classification_from_urban_point_clouds/links/57e194f508ae1f0b4d93ec5d/Pole-like-object-detection-and-classification-from-urban-point-clouds.pdf
https://www.researchgate.net/profile/Jing-Huang-3/publication/282985504_Pole-like_object_detection_and_classification_from_urban_point_clouds/links/57e194f508ae1f0b4d93ec5d/Pole-like-object-detection-and-classification-from-urban-point-clouds.pdf
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Rodríguez-Cuenca et al. (2015) investigated the 

potential application of an anomaly detection 

algorithm to identify and categorize vertical urban 

objects and trees using unstructured three-

dimensional point cloud data from mobile laser 

scanners (MLS) or terrestrial laser scanners (TLS). 

Their results indicated detection rates exceeding 

96% at the two test sites, with a classification 

accuracy of approximately 95% and a completion 

quality of 90% for both procedures. In another 

study, Zhu et al. (2017) explored the feasibility of 

employing a semantic classification technique by 

dividing spatial space into fixed-size voxels. This 

approach addressed the challenges associated with 

non-homogeneous density distributions in point 

clouds. The proposed technique achieved an 

average per-area completeness of 93.88% and 

correctness of 95.78%. 

Kuang et al. (2020) developed a deep architecture 

using the Voxel-Feature Pyramid Network (FPN) 

for multi-scale voxel partitions. Their experimental 

results demonstrated competitive 3D detection 

outputs while significantly reducing time 

complexity, making it suitable for real-world 

inference tasks. In their study, Tian et al. 

(2019) designed a multilayer neural network-based 

3D object recognition system that extracted 

multiple features from LiDAR point clouds. They 

pre-processed the data by extracting non-ground 

points and initializing a voxel model based on the 

valid range of the remaining point clouds. Aijazi et 

al (2013) proposed a super-voxel-based 

segmentation and classification method for 3D 

urban scenes. Their study yielded an overall 

segmentation accuracy (OSACC) of 87% and an 

overall classification accuracy (OCACC) of 

approximately 90%. 

Deep Learning for LiDAR Point Cloud 

Classification  

In recent year, deep learning (DL) has become one 

of the emerging topics in computer vision due to its 

effectiveness image segmentation. In this respect, 

Convolutional Neural Networks (CNNs) are the 

key architecture that has been used in DL methods 

for classifying an entire image dataset (Krizhevsky, 

et al., 2017). Due to the requirement of regular and 

structured data as input for most deep learning 

architectures (such as 2D images), point cloud data 

often needs to be transformed. This transformation 

can involve projecting/rasterizing the point cloud 

into images or voxelizing it into 3D grids (Che et 

al., 2019). In another study, Melotti et al. (2020) 

proposed multisensor fusion strategies (combining 

camera and LIDAR data) for object recognition. 

They employed a CNN network (specifically, 

Inception V3) to classify RGB images and LIDAR 

data. Additionally, Widyaningrum et al. (2021) 

introduced the point-wise deep learning method 

called Dynamic Graph Convolutional Neural 

Network (DGCNN). 

In another study, Stanislas et al. (2021) compared 

two deep learning algorithms, the first is based on 

voxel-wise classification, while the second is based 

on point-wise classification. They evaluated the 

performance of the proposed approaches on a 

realistic dataset with the presence of fog and dust 

particles in outdoor scenes and; results showed an 

F1 score of 94% for the classification of airborne 

particles in LiDAR point clouds. Diab et al. (2022) 

in their study evaluated the possible application of 

DL models, categorized by the structure of the data 

they consume.  The authors conclude that 

convolutional neural networks (CNNs) achieve the 

best performance in various remote-sensing 

applications while being light-weighted models, 
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namely Dynamic Graph CNN (DGCNN) and 

ConvPoint. Özdemir et al. (2019) evaluated the 

feasibility of various machine learning algorithms 

for aerial point cloud classification, including three 

deep learning algorithms and one machine learning 

algorithm. The results illustrated that deep learning 

algorithms can reach better accuracies; however, it 

takes relatively longer time to train and evaluate the 

employed networks. Recently, Wen et al. (2021) 

developed a global-local graph attention 

convolution neural network (GACNN) for 

classifying  3D point clouds from aerial LiDAR 

system. Experimental results showed that the 

proposed model achieves a satisfactory F1 score of 

71.5% and overall accuracy of 83.2%.        

Applications of LiDAR Systems for 3D City 

Modeling  

LiDAR systems have become a rapidly expanding 

field in recent years with particular significance in 

the treatment of 3D point cloud information for 

scientific, commercial and operational applications. 

In this regard, In the past years, there has been a 

considerable amount of research on 3D modeling 

of urban environments using LiDAR point cloud 

data (Sirmacek and Lindenbergh, 2015; Krizhevsky 

et al., 2017; Che et al., 2019). In several studies, it 

was demonstrated that LiDAR systems are useful 

to derive a wealth of information for 3D city 

modeling (pu and Vosselman, 2009; Elberink and 

Vosselman, 2009; Yan et al., 2016; Jung et al., 

2017; Mandanici et al, 2016; Jochem et al., 2009; 

Jochem et al., 2011; schuffert et al., 2015; Zhao et 

al., 2015; Lafortezza and Giannico, 2019; Peng et 

al., 2017). In the following subsections applications 

of LiDAR systems in 3D city modeling is 

described in more detail.   

 

Building Reconstruction  

One of the key components of any 3D City Model 

is a three-dimensional representation of the 

buildings present in the scene; the process of 

creating these 3D building models that include a 

geometric three-dimensional representation of roof 

and facades details is often referred to as building 

reconstruction. Building reconstruction is of 

primary importance in several applications, ranging 

from urban planning and telecommunication 

network propagation studies to applications for 

next generation vehicle navigation (Kokkas, 2009). 

In recent years building modeling and visualization 

have seen progress, where researchers, have used 

LiDAR data for the extraction of buildings and to 

obtain 3D reconstructions of buildings (Haala and 

Brenner, 1999; Zhu et al, 2011; Zhang et al., 2014; 

Elberink and Vosselman, 2009; Pu and Vosselman, 

2009; Wu et al., 2017).   

In their research, Rottensteiner et al. (2005) 

investigated building detection using LiDAR data 

and multispectral images based on Dempster-

Shafer theory. Their findings were satisfactory: 

approximately 95% of buildings larger than 50 

square meters could be detected, with about 89% of 

those detections being accurate. However, 

detection rates significantly decreased for smaller 

building structures (below 30 square meters). More 

recently, Wu et al. (2017) proposed a graph-based 

approach that utilized hierarchical structure 

analysis of building contours from LiDAR data to 

reconstruct urban building models.  The results 

demonstrated successful reconstruction of complex 

buildings, with a mean modeling error of 0.32 

meters. 

Li et al. (2016) conducted a study on extracting and 

simplifying building facade pieces. They proposed 

a 3D LIDAR point cloud segmentation method 

combined with side-view projection based on high-

https://www.sciencedirect.com/topics/computer-science/neural-networks
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precision POS data. By transforming the point 

cloud through projection, they effectively enhanced 

building facade features. Subsequently, they 

analyzed side-view projection image features and 

building facade traits. Their proposed method 

utilized morphological filtering for building facade 

extraction, ultimately achieving precise 3D 

building facade reconstruction. Notably, this 

approach is feasible for most city buildings, 

requires less computational workload than full 

point cloud processing, and relies solely on driving 

and recording data from roads. 

Awrangjeb et al. (2010) also introduced an 

automatic building detection technique using 

LIDAR data and multispectral imagery. Their study 

demonstrated that the proposed technique 

successfully detects urban residential and industrial 

buildings of various shapes with a very high 

success rate. However, the method may exhibit 

limitations in areas with high-terrain slopes or 

dense high-rise buildings of rapidly varying height 

within a given tile size. In such cases, the average 

digital elevation model (DEM) height may not 

accurately correspond to the actual ground height. 

Similarly, Kabolizade et al. (2010) proposed an 

improved snake model for automatic building 

extraction from aerial images and LiDAR data. 

Their results indicated that this algorithm 

outperformed the traditional snake model by 

converging more quickly and stably to true 

building contours, especially in complex urban 

environments. 

Alexander et al. (2009) also conducted research to 

visualize an urban area (Portbury near Bristol, 

England) by combining building footprints and 

LiDAR data. They found that high density LiDAR 

yielded the highest overall accuracy of building 

type detection, yet lower densities proved more 

useful for revealing overall roof morphology. 

Airborne Laser Scanning (ALS) data was used by 

Sirmacek and Lindenbergh (2015) to obtain 3D 

building models automatically. With the use of an 

active shape fitting-algorithm the authors proved 

the possibility of using the algorithm when simple 

and easy-to-render 3D models of large cities are 

needed. The method developed by Yan et al. 

(2017) used hierarchical segmentation, named LS-

ORTSEG. The method was proposed to enhance 

the performance of a model-free framework for 

building 3D reconstructions.  

Pu and Vosselman (2009) also studied the 

possibility of using terrestrial laser points for 3D 

feature extraction (building façade reconstruction) 

using semiautomatic building facade reconstruction 

approach. Another approach using target-based 

graph matching algorithm was applied by Elberink 

and Vosselman (2009) to automatic building 

reconstruction from laser data. The matching 

algorithm filters out segments and intersection lines 

did not match completely of a target. About 20% of 

the buildings were affected by segments that did 

not completely match the target graphs. In a few of 

these cases, this was correct because the segment 

was not representing a roof face. But, in about 40% 

of the cases, a neighboring segment that would 

complete a target match was missing. Dorninger 

and Pfeifer (2008) also proposed a comprehensive 

approach for the automated determination of 3D 

city models from airborne laser scanning point 

cloud data. In another study Song et al., (2020) 

proposed a framework for building reconstruction 

by using assembling and deforming geometric 

primitives, and the experimental results showed the 

effectiveness of the proposed method. More 

recently, Kulawiak, (2022) using sparse point 

clouds developed an algorithm for reconstructing 

simplified building models.  
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Solar Potential Assessment 

3D city models play a crucial role in estimating a 

building’s sun exposure to assess the suitability of 

installing solar panels on roofs. These models 

provide geometric information such as roof tilt, 

orientation, and area, which serve as essential 

inputs for solar empirical models (Biljecki, 2015). 

Jochem et al. (2009) conducted research on 

automatic roof plane detection using airborne 

LiDAR point clouds to assess solar potential. Their 

method achieved roof plane detection with 94.4% 

completeness and 88.4% correctness, maintaining 

high accuracy 2. Schuffert et al. (2015) explored 

using LiDAR and aerial images for quality 

assessment of roof planes in solar energy systems. 

The extended quality assessment demonstrated 

benefits, with completeness values ranging from 

87% to 96%, correctness from 83% to 99%, and 

overall quality from 80% to 92%.  

Jochem et al. (2011) investigated using LiDAR 

data for solar potential assessment, including the 

extraction of vertical walls from mobile laser 

scanning. Additionally, Huang et al. (2015) applied 

GPU-accelerated solar radiation models and 

airborne LiDAR data to estimate roof solar energy 

potential in Shanghai. Estimating building 

insolation is crucial for assessing thermal comfort 

and identifying buildings exposed to excessive 

sunlight, which can lead to overheating during 

summer. Urban layout design can maximize 

insolation in neighbourhoods, and decentral energy 

source capacities can be estimated for crisis 

management applications (Biljecki, 2015). Huang 

et al. (2017) explored the feasibility of using 3D 

ground laser scanning point clouds for solar 

potential assessment, while Mansouri Kouhestani 

et al. (2019) evaluated rooftop photovoltaic 

electricity potential using a multi-criteria approach 

based on GIS and LiDAR systems in Lethbridge, 

Canada. The city’s rooftop PV electricity 

generation potential was estimated at 

approximately 38% of its annual consumption. 

Change Detection 

Zu et al. (2015) point out that the detection of 

changes in the urban environment has become 

important for land management, the identification 

of illegal buildings, monitoring urban growth, 

urban landscape pattern analysis, and updating 

geographic information databases. Their 

experimental results have showed that the overall 

accuracy for change detection of buildings and 

trees reached 94.8% and 83.8%, respectively. Pang 

et al. (2014) in their study on building change 

detection in Guangzhou city, South China used an 

object-based analysis method using airborne 

LiDAR data. They found that the proposed method 

can successfully locate the changed buildings and 

correctly determine the change type.  

In another study, Xu et al. (2015) used point clouds 

from airborne laser scanning (ALS) data for 

detecting and classifying changes to buildings.  In 

the study three data sets, located in commercial and 

residential areas of Rotterdam, the Netherlands 

have been used. The authors found that their 

method detected 91% of actual changes in Test area 

1(commercial area) and 83% in Test area 

2(residential area). Performance analysis has 

shown that 80%–90% of real changes were found, 

of which approximately 50% were considered 

important. Stal et al. (2013) in their study on the 

application of airborne photogrammetry and 

LiDAR for DSM extraction and 3D change 

detection in the inner city of Ghent, Belgium, 

found that the resulting surface models of both 

approaches (DSMs generated from both stereo 

aerial imagery and ASL data) were highly 

comparable in a qualitative and 
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quantitative/statistical way for various 3D 

reconstruction of individual buildings or building 

blocks and other urban features. The techniques 

have also the potential to be highly complementary 

in terms of degree of detail, coverage size, the 

necessity for spectral information, etc. The authors 

also found that DSM errors, model noise, lack of 

quality, and insufficient detail or low spatial 

resolution have a significant impact on the 

accuracy and performance of the change detection 

approach.  

In another study conducted by Du et al. (2016), 

aerial images and LiDAR data were used to 

determine building changes in a test area covering 

approximately 2.1 km2 and consisting of many 

different types of buildings.  In this experimental 

study, graph cuts labeling was employed to 

determine changes, and the height difference was 

combined with the grey-scale similarity to form the 

data term of the energy function, and the efficiency 

of the combined methodology was validated in the 

experiment. The results indicated that the 

completeness of more than 93% for positive 

changes, 94% for negative changes, and correctness 

of 90.2% and 94.1%, respectively. It can be 

compared to the building detection result with the 

same source of multi-temporal data. Recently, Tran 

et al., (2018) proposed a fusion of automatic 

classification and change detection based on a 

supervised machine learning method to detect 

changes in the objects building and tree, as well as 

changes of the ground. The results illustrated that 

the overall accuracy of the classification of each 

change type of the 2007 dataset and 2015 dataset 

reached 90.93% and 92.04%, respectively. In their 

study Shirowzhan et al. (2019) evaluated and 

compared  the performance of five selected 

algorithms including three pixel-based algorithms, 

Digital Surface Model differencing 

(DSMd), Support Vector Machine (SVM) and 

Maximum Likelihood (ML), and two point-based 

change detection algorithms (i.e. Cloud to Cloud 

and Multiple Model to Model Cloud Comparison) 

for building change detection based on airborne 

LiDAR point cloud data. The results of the analysis 

showed that, among point-based algorithms, 

Multiple Model to Model Cloud Comparison 

algorithm was able to show the magnitudes of 

building height changes and differentiate between 

new and demolished objects.  

Urban Transport 

In their study, Jaakkola et al. (2008) developed 

retrieval algorithms for road surface modeling 

using a laser-based mobile mapping system. They 

successfully identified zebra crossings and 

curbstones as expected, and correctly classified 

parking space lines where possible. The mean 

accuracies achieved were approximately 80% or 

better for lines, zebra crossings, and curbstones. 

Additionally, Cabo et al. (2016) applied an 

algorithm for automatic road asphalt edge 

delineation from mobile laser scanning (MLS) data. 

Their method involved transforming the original 

point cloud into a structured line cloud. By 

clustering lines based on geometric criteria related 

to parallelism and proximity, they identified the 

group containing road lines. An initial road edge 

polyline was obtained from the end nodes of this 

group, which was further smoothed using a two-

stage filtering process. Testing the algorithm on 

two datasets from Roamer along a 2.1 km stretch of 

road yielded similar results: 99% surface 

correctness (proportion of detected surface within 

the actual road) and 97% surface completeness 

(proportion of actual road detected by the 

algorithm). Combining both datasets increased both 

completeness and correctness to 98%. 

https://www.sciencedirect.com/topics/engineering/support-vector-machine
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Furthermore, Zhang et al. (2014) explored the use 

of airborne LiDAR data for automatic vehicle 

extraction using an object-based point cloud 

analysis (OBPCA) method. Their approach 

involved detecting ground points through 

segmentation-based progressive TIN densification 

and identifying potential vehicle points based on 

normalized heights of non-ground points. 

Subsequently, 3D connected component analysis 

grouped potential vehicle points into segments, and 

vehicle segments were detected based on area, 

rectangularity, and elongatedness. Experimental 

results demonstrated that their proposed method 

achieved higher accuracy than the existing mean-

shift-based method for vehicle extraction from 

airborne LiDAR scanning (ALS) point clouds. 

Another study by Zhu and Hyyppa 

(2014) illustrated the possibilities of integrating 

airborne and mobile laser scanning for 3D 

modeling of railway environments. The study 

addressed modeling an entire railway environment, 

including ground, railroads, buildings, powerlines, 

pylons, street/traffic lights, and trees, using both 

MLS and ALS datasets. The authors proposed new 

solutions for object extraction, 3D reconstruction, 

model simplification, and final 3D visualization 

based on image processing technology, 3D 

randomized Hough transformations (RHT) for 

planar detection, and a quad-tree approach for 

ground model simplification. 

Additionally, Castro et al. (2015) evaluated the 

impact of successive station spacing within the 

vehicle path on sight distance analysis results and 

the influence of digital terrain model (DTM) 

resolution. Their findings indicated that DTM 

resolution significantly affected result quality 

compared to the distance between calculation 

points. In recent developments, Jung and Bae 

(2018) created a near real-time working prototype 

for road lane detection in complex urban routes 

using 3D LiDAR data in the cities of Seongnam 

and Incheon, South Korea. Moreover, Kilani et al. 

(2021) assessed the potential of an automated 

method based on LiDAR point cloud data to map 

and detect road obstacles affecting drivers’ field of 

view at urban intersections.  The authors concluded 

that intersections with limited available sight 

distances (ASD) posed an increased risk of 

collisions. 

Flood Inundation Modeling 

A natural phenomenon in the hydrological cycle is 

flooding. Flooding is necessary to replenish soil 

fertility by periodically adding nutrients and fine-

grained sediment; however, it can also cause loss of 

life and permanent damage to rural and urban 

infrastructure (CCRS, ND). Flooding is the most 

common and damaging natural hazard faced by 

civilization, and their impact is likely to escalate 

due to climate change projections, which indicate 

rising sea levels and more severe cyclonic weather 

patterns and precipitation (Yang et al., 2011). 

Topographic data, and more importantly recent and 

highly accurate LiDAR topographic data, are 

crucial for flood inundation modeling in the urban 

environment. Estimating the extent of floods has 

been a traditional topic in GIS and remote sensing, 

mostly with digital terrain models. However, 

modeling of the propagation and impact of flooding 

by an overflow of water from water bodies or 

heavy precipitation can be improved by using 3D 

city models (Biljecki, 2015).  

The use of LiDAR data in urban flood modeling is 

well-documented by Meesuk et al. (2015) who 

model urban flood by combining top-view LiDAR 

data with ground-view SfM (structure from 

motion) observations. The result of their study has 

shown that the multi-view approach of combining 
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top-view LiDAR data with ground-view SfM 

observations shows good potential for creating an 

accurate digital terrain map which can be then used 

as input for a numerical urban flood model. Ghazali 

and Kamsin (2008) studied flood hazard in Kuala 

Lumpur using 3D Computer Graphics and fluid 

simulation techniques to LIDAR DEM and satellite 

imagery. They implemented the SPH method using 

GLU3D to create the water flow in MAYA. They 

simulated the water using 12,000 particles. First, 

they tested the particle simulation within the river 

confluence area. The first testing was inclusive of 

the first 2 hours of the flash flood incident. The 

static simulation was based on LIDAR DEM data 

which they aligned the water level according to 

time. They created 12000 particles to simulate the 

water and tested the animation in real-time of 

18fps.The authors found that by reducing the 

particles, less computation was used and the 

accuracy of the simulation can be enhanced. Their 

study showed that by using 12000 particles, it 

could handle a fluid simulation with a range of 

10,000m2 by using this approach. 

In another study, Jakovljevic et al. (2019) presented 

a technique of point cloud classification and ground 

point filtering using deep learning (DL) and Neural 

networks (NN) algorithms and the results showed 

that UAV SfM provides a derived DEM with a 

resolution and accuracy that are suitable for flood 

risk management.  Li et al. (2021) evaluated the 

potential of UAV platform, LiDAR sensor for 

flood management and the results demonstrated 

that LiDAR UAV techniques are an efficient and 

dependable method for surveying terrain making 

them highly important for creating high accurate 

flood simulation. In another study, Gebrehiwot et 

al. (2021) evaluated and compared two methods for 

inundation depth estimation based on UAV images 

and topographic data and; the results showed that 

deep learning-based method is a promising 

approach to classify the SFM flood water point 

cloud and create a 3D water surface. 

Other Applications   

In their study, Yan et al., 2015 highlight the utility 

of airborne LiDAR data for urban land cover 

classification. While early studies primarily 

focused on geometric aspects of 3D LiDAR point 

clouds, recent interest has shifted toward 

leveraging intensity data, waveform data, and 

multi-sensor information to enhance land cover 

classification and object recognition in urban 

environments. The authors review and discuss 

advancements in airborne LiDAR technology, 

including data configuration, feature spaces, 

classification techniques, and radiometric 

calibration/correction. Additionally, Kim (2016) 

proposes a technique to improve land cover 

classification accuracy by addressing 

misclassification of building objects through the 

fusion of aerial images and airborne LiDAR data. 

In another study, Zhang et al. (2015) employ 

LiDAR for automated urban forest inventory at the 

individual tree level. Giannico et al. (2016) 

estimates forest stand volume and above-ground 

biomass (AGB) in urban and peri-urban areas. 

Rutzinger et al. (2008) also used LiDAR for 

classifying urban vegetation. Schreyer et al. (2014) 

model urban tree carbon storage and distribution. 

Cheng et al. (2014) explore using vehicle-borne 

LiDAR data to extract urban power lines.  

Zhang & Shao (2021) evaluated the feasibility of 

urban vegetative above ground biomass (AGB) 

estimation by integrating terrestrial AGB 

observations and multi-source remote-sensing data 

and the results demonstrated that the proposed 

approach improved the inversion accuracy of 

estimating urban vegetation biomass. In their study 
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Lafortezza & Giannico (2019) evaluated the 

potential of integrating of stakeholders’ perception 

with high-resolution satellite images and LiDAR) 

point-cloud to assess the ecosystem services (ESS) 

provided by urban green spaces. In another study, 

Inzerillo et al. (2018) developed a model for road 

pavement distress analysis using Image-based 3D 

reconstruction and UAV datasets. The results 

demonstrated that the proposed integrated method 

accurately replicates pavement distresses. Balsa-

Barreiro & Fritsch (2018) developed a 

methodology for 3D models of historical cities with 

the combined use of laser scanning and 

photogrammetric techniques and the experimental 

results demonstrated a 3D virtual model with high 

geometric accuracy.  

In recent study, Moretti et al. (2021) explored the 

application of Geospatial Building Information 

Modeling (GeoBIM) for assessing the condition of 

built environments. Their study aimed to enhance 

decision-making for asset managers by providing 

location-enabled insights. The authors found that 

the 3D digital model of a built asset could serve as 

a valuable component within a broader digital twin 

of a city. When coupled with real-time sensor 

devices reporting asset conditions, GeoBIM offers 

significant potential. Additionally, Jang et al. 

(2022) proposed a BIM-based management system 

specifically for Off-Site Construction (OSC) 

Projects. Their experimental results demonstrated 

improved efficiency, reduced input time, and 

decreased workload compared to non-BIM-based 

management approaches. 

Conclusions and Future Outlook 

LiDAR systems are crucially developing and wide-

ranging trends are visible in LIDAR applications 

for 3D city modeling these days. In this context, the 

main conclusions and outlook of this paper can be 

summarized as follows: 

 Over the past decade there have been an 

increasing number of examples of LiDAR 

systems applications in 3D city modeling. 

3D city modeling applications of LiDAR 

include, but are not limited to, building 

reconstruction, solar power potential 

assessment, change detection, urban 

transport system, flood   inundation 

modeling, urban vegetation and urban and 

peri urban forest, urban land cover 

classification, urban infrastructure 

modeling, ecological environment 

modeling, digital reconstruction, and 

GeoBIM. 

 However, there are still many significant 

shortcomings related to applications of 

LiDAR systems including high initial 

costs and a lack of standardized 

procedures to process large volumes of 

data. So far, LiDAR systems have been 

extensively used for 3D city modeling in 

the developed world. Unfortunately, many 

places around the world do not have the 

resources to obtain LiDAR data. Besides 

this, the quality of LiDAR products 

depends upon the sampling and filtering 

methods used.  

 Luckily, it is anticipated that with the 

advancement of LiDAR technology, lower 

costs, improved data processing and 

feature extraction techniques such as 

handcraft features, segmentation, 

clustering and  deep learning, multisource 

data fusion and registration, the use of 

advanced machine learning algorithms   

and a greater number of experimental 

studies of laser scanning-based remote 
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sensing for 3D city modeling applications, 

there will be a greater expansion of the 

benefits of this technology for 3D city 

modeling applications in the developing 

countries. For instance, the increased 

availability of LiDAR data at a reasonable 

cost might make this technique a possible 

interesting alternative for 3D city 

modeling, in developing countries like 

Ethiopia, in their effort for mapping and 

monitoring of socio-economic, 

environmental and infrastructure problems 

in urban areas. 

 In fact, LiDAR point cloud data and aerial 

photography and/or satellite imagery 

provide complementary information 

related to 3D city modeling. In this regard, 

the integration of multisource data such as 

airborne laser scanning with ground-based 

laser scanning, air born laser 

scanning/ground-based laser scanning 

with aerial photography and/or satellite 

imagery represents an interesting 

alternative in 3D city modeling.  However, 

this application is not fully developed, and 

problems must be solved in order to 

develop fully integrated applications of 

LiDAR point cloud data and aerial 

photography and/or satellite imagery for 

3D city modeling. For instance, the 

problem which needs to be dealt with is 

advanced algorithms that perform reliably 

on multi-source LiDAR point cloud and 

imagery data.  

 Another trend accompanying the 

development of terrestrial and aerial 

LiDAR systems is intelligent data 

processing and extraction with state-of-

the-art methods such as deep learning. 

Object recognition and classification from 

LiDAR point clouds data with newly 

developed machine learning algorithms 

will improve reliability of decision 

support systems and will contribute to 

modernized 3D object detection, building 

reconstruction, road safety, disaster risk 

management and monitoring urban 

environment, but the need for 3D city 

modeling using LiDAR point cloud data 

can be a bit data processing and 

algorithms extensive. Thus, the increased 

availability of high quality terrestrial and 

aerial at reasonable cost such UAV point 

cloud data and intelligent feature 

extraction and object reconstruction and 

classification using the deep learning 

algorithms makes this technique possible 

interesting alternative approach for 

improved point cloud data processing and 

information retrieval. 

 In general, though LiDAR systems cannot 

capture all types of urban information, 

they can reliably provide accurate and 

timely information to socio-economic and 

environmental, and urban management 

and monitoring related decision-making.           
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